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Application of Translation Functions to the Direct Methods Solution of an Unknown Structure 

BY L . T . J .  DELBAERE AND M .  N .  G.  JAMES 
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(Received 27 July 1972; accepted 20 October 1972) 

The direct methods solution of the crystal structure of 2,5'-anhydro-2',3'-isopropylidenecyclouridine 
initially located a portion of the molecule in an incorrect position in the unit cell. The vector shift 
required to move the partial structure to the correct position was determined by use of a difference 
function proposed by Karle [Acta Cryst. (1972), B28, 820-824]. 

The attempted solution of the crystal structure of 2,5'- 
anhydro-2',3'-isopropylidenecyclouridine, C12H14N205 
(Fig. 1) by direct methods led to the location of a 
portion of the molecule in the unit cell correctly ori- 
ented with respect to the crystallographic axes but 
incorrectly positioned with respect to the crystallo- 
graphic symmetry elements. The vector displacement 
of this portion of the molecule from its actual po- 
sition in the unit cell was determined by use of the 
difference function which was proposed by Karle (1972). 

The colorless crystals of 2,5'-anhydro-2',3'-isopro- 
pylidenecyclouridine were supplied by Dr R. U. 
Lemieux of the Department of Chemistry, University 
of Alberta. The space group of these crystals is P2~ 
with cell dimensions a =  10.344, b=  6.407, c=9.077 A 
and t =  93.69 °. The origin was specified by the follow- 
ing reflections: 

h k l E phase 
5 0 7 2.5 0 
2 0 5 2.4 0 

10 1 1 2 .6  0 

Symbols were assigned to four additional reflections 
and including these along with the origin set, symbolic 
addition by hand (Karle & Karle, 1966) on a ~z listing 
was carried out using the relationship 

g0h ~ Q0k-k- qVh_ k)k r . (1) 

By making use of the most commonly occurring rela- 
tionships between symbols four possible solutions were 
obtained. One of these symbols was given values of 
n/4 and 3n/4 radians, thus fixing the enantiomorph. 
The four starting sets of seven reflections were each 
used as input into the phase refinement procedure using 
the tangent formula (Karle & Hauptman, 1956), 

[Ek. En-k[ sin (~0k + ~Ph-k) 
k 

tan ~Oh = - ~  IEk. Eh-kl COS (~Ok + ~Oh-k) 
k 

(2) 

Almost all of the 150 reflections with Emin > 1"6 had 
their phases so determined. The R~:arl, values (Karle 
& Karle, 1966)ranged from 0.178 to 0.201 for these 
four solutions. Phase relationships involving the three 
principal zonal reflections are often unreliable, prob- 
ably due to overlap of atoms in projection (Karle, 
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Fig. 1.2.5'-Anhydro-2',3'-O-isopropylidene cyclouridine. 
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Fig. 2. Projection of the unit cell along the b axis. The upper 

molecule and the lower partial structure are those found in 
the E maps for the R~arie = 0" 150 and 0.193 solutions respec- 
tively. 
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1970). Considerable overlap of atoms in projection 
was probable for the cyclonucleoside; thus such rela- 
tionships were removed from the ~z listing and from 
the tangent-formula refinement. An examination of the 
phase values for each solution indicated some ten- 
dencies among groups of reflections with the same k 
index to have approximately the same phase value or 
rc radians from the same phase value. The solution 
having RKarle=0"193 had the most random distribu- 
tion of phase values and an E map calculated for this 
solution contained a portion of the molecule (see Fig. 2, 
lower part); E maps calculated for the other three solu- 
tions were not chemically meaningful. The peaks on 
this map corresponding to the atoms of the uracil ring 
were well resolved, whereas peaks occurring off the 
plane containing this ring were diffuse. Nevertheless 
eleven additional peaks forming a chemically reason- 
able unit were chosen from the remaining maxima in 
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Fig. 3. (a) v=0 section of the Patterson function calculated 
with (IE,! 2-  1) as coefficients. (b) v=½ section of the Patter- 
son function calculated with (IEhl z - l )  as coefficients. (c) 
v=0 section of the Patterson function calculated with 
(IEh, M(S~ . . . .  S,)lZ-1) as coefficients. (d) v=½ section of 
the Patterson function calculated with (IEh. M(St . . . .  Sn)l ~- 
1) as coefficients. 

the map. A structure factor calculation (all of the 
atoms were given the scattering factor of carbon) 
produced an R index of 0.516. Attempted least-squares 
refinement of the structure was unsuccessful. A portion 
of the molecule had apparently been located in an in- 
correct position in the unit cell. 

The vector displacement required to shift the mole- 
cule to its correct position was determined by the cal- 
culation of the following difference functions (Karle, 
1972): 

O(6)= ~ (IEhl*-- 1) [IEh, M(S1, . . .  S.)l ~ -  1] 
h 

x c o s 2 ~ h .  6 (3) 

D,(~): ]~ { [(IE~I'~-1)-/~ ]~ (IE~, ~(S,)l ~- 1)] 
h i=1 

1. } 
x [(IEh, M(S~, . . .  S,)I 2 -  1 ) -  n ~ (IEh'M(S')I2- 1)1 

1=1 

×cos 2~h. 6 (4) 

where (IEhl 2 -  1) are the observed normalized structure 
amplitudes; (IEh.M(S~, . . .  S,)12-1) are the normal- 
ized structure amplitudes computed for the partial 
structure; S~ represents one of the n symmetry equiv- 
alents of the space group. 

The v = 0 and v = 3 sections of the Patterson function 
computed with (IEhl 2 -  1) as coefficients are given in 
Fig. 3(a) and (b) respectively; the corresponding sec- 
tions of the Patterson function with [IEh. M(S~, . . .  S,)I z 
- 1] as coefficients are in Fig. 3(c) and (d) respectively. 
The v = 0  sections of the functions calculated from 
equations (3) and (4) are in Fig. 4(a) and (b) respec- 
tively and Fig. 4(c) is the v = 3  section calculated from 
equation (3). It is of importance to note the relative 
peak population on the v = 0  and v = 3  sections of the 
(IEI 2 -  1) Patterson map. Even though the correct space 
group is P21 the v = 0  section is more densely popu- 
lated with vector peaks than is the Harker section 
(v=3). 

An atom at (x,y, z) in the partial structure is located 
at (x+m,y,z+p) in the actual structure, where m and 
p are the shifts required in the x and z directions in 
order to move the atom in the partial structure to its 
correct position. The difference between the Harker 
peak (2x + 2m, 3, 2z + 2p) for an atom in the actual struc- 
ture and its Harker peak (2x,3,2z) in the partial struc- 
ture is (2m,0,2p). These differences for various atoms 
should contribute to the same peak in the v=O sec- 
tion of the difference functions calculated from either 
equation (3) or (4). This peak is denoted by G in Fig. 
4(a) and (b). Since there are special relationships be- 
tween the locations of atoms in the structure, a similar 
peak, denoted by J in Fig. 4(c), is also present on the 
v=½ section calculated from equation (3). This is due 
to pairs of atoms having approximately the same x 
and z coordinates with the y coordinates differing by 3. 
The vector peak between one such atom and the sym- 
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metry equivalent of the other member of the pair is 
(2x + 2m, 0, 2z + 2p). The Harker peak for these atoms 
is (2x, 1, 2z) and the difference between these two peaks 
is (2m,½,2p). A pair of oxygen atoms in the structure 
satisfies this condition. The peak H in Fig. 3(a) and 
the peak I in Fig. 3(d) correspond to the peaks on the 
v = 0  and v =½ sections of the Patterson functions and 
their difference is the peak J [Fig. 4(c)]. That the peak 
J is due to intramolecular vectors is shown by its ab- 
sence on the v = ½ section calculated from equation (4). 
It is interesting to note that the strongest and best 
resolved of the peaks due to the correct vector shift 
occurs on the v=½ section of the difference function 
calculated from equation (3). The correct shift which 
was obtained from this peak is 0. l l2x/a+ 0.394z/c. 

This apparently fortuitous appearance of the correct 
shift peak on the v=½ section computed using equa- 
tion (3) is thus a direct result of this particular struc- 
ture which contains considerable overlap in the (010) 
projection. The correct shift peak is present on the v = 0 
sections as seen in Fig. 4(a) and (b) but its relatively 
small peak height would have precluded solution of 
the structure for a considerable time. 

The initial R index on the shifted fragment was 
0.511 (all atoms considered as carbon). The phases of 
fifty two reflections having a minimum E value of 1.7 
and also a calculated structure amplitude for this 
shifted moiety of at least one-half of the observed struc- 
ture amplitude were used as the starting set in the tan- 
gent formula (2). The phase values of the starting set 
were fixed for the first cycle (five iterations per cycle) 
and two further cycles generated the phases of 174 of 
the 176 reflections having a minimum E value of 1.55. 
The RKar~ was 0.150 for this solution. The strongest 
peaks on the resulting E map correspond to all of the 

non-hydrogen atoms of the structure. Initial structure- 
factor calculations with all of these atoms denoted as 
their correct species, produced an R index of 0.187. 
After three cycles of full-matrix least-squares refine- 
ment, the hydrogen atoms were located from a differ- 
ence Fourier synthesis. Two further cycles of refinement 
on the parameters of all of the atoms (isotropic tem- 
perature factors) produced the present R index of 0.078. 

Fig. 2 is a projection of the unit cell along the b axis. 
The upper molecule is the correctly located molecule 
as found in the E map based on the solution with 
RKarte =0"150. The lower partial structure represents 
those features found in the E map based on the R~:ar~e 
= 0" 193 solution - the solid circles denote atoms which, 
after the vector shift, are in correct positions, open 
circles signify those which, after the correct displace- 
ment, have an incorrect y coordinate and the x ' s  are 
the peaks which, when shifted, do not correspond to 
atoms in the actual structure. 

The tangent-formula refinement with the three two- 
dimensional reflection phase relationships removed 
calculated 64 phase values within 10 degrees of their 
final values whereas the same starting set with all the 
triple relationships included in the tangent formula, 
produced only 54 phases which had values within 10 
degrees of their final values. In the crystal structure of 
2,5'-anhydro-2',3'-O-isopropylidenecyclouridine, there 
is considerable overlap of atoms in projection, partic- 
ularly along the b axis of the unit cell. Thus, in such 
a case, the removal of the three sets of zonal reflec- 
tions hkO, hOl, Okl from the tangent formula generates 
more accurate phase values. 

We would like to thank the referee for pointing out 
our initial misinterpretation of the difference Patterson 
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Fig. 4. (a) v = 0 section of the difference function calculated from equation (3). (b) v = 0 section of the difference function cal- 
culated from equation (4). (c) v = ½ section of the difference function calculated from equation (3). 
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maps computed with equation (3). The NRC Crys- 
tallographic programs (Ahmed, Hall, Pippy & Huber, 
1966) and ORFLS were used in the computations. The 
data were collected on a Picker FACS-1 System with 
molybdenum radiation (graphite monochromator). 
This work was supported in part by grant MA-3406 
to M.N.G.J. from the Medical Research Council of 
Canada and in part by the National Research Council 
of Canada grant (A-172) to R.U. Lemieux for support 
to L.T.J.D. 
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A New Direct Method for Characterizing Structures with Stacking Faults, Built up from 
Translationally Equivalent Layers. 

I. Faults in Stackings of Three and Four Layers 

BY M. FARKAS-JAHNKE 

Research Institute for Technical Physics of  the Hungarian Academy of Sciences, Budapest, Hungary 

(Received 5 September 1972; accepted 8 October 1972) 

The direct method for determination of the stacking sequences of periodic polytypes has been success- 
fully applied to the calculation of structural characteristics of stacking-faulted lattices built up of transla- 
tionally equivalent layers. From the intensity distribution along row-lines of indices h -  k :/: 3n on oscilla- 
tional X-ray patterns rc'(m,p) sets were calculated, which give the relative rate of occurrence of the re- 
lated stacking vectors. Formulae are derived for calculating cyclicity, hexagonality and the relative rate of 
occurrence of four-layer stackings using the ~z' (m,p) values. It is shown that this method may be used also 
to determine directly the e and fl fault parameters used by Jagodzinski. 

Introduction 

Because of the practical importance of materials with 
structures built up of translationally equivalent layers, 
several theories and methods have been worked out 
since the early days of X-ray diffraction methods to 
make possible the characterization of their faulted 
structures (Warren, 1941; Hendricks & Teller, 1942; 
Gevers, 1952, 1954; Kakinoki & Komura, 1952; Pater- 
son, 1952; Johnson, 1963; Allegra, 1964; Sato, 1966, 
1969; Kakinoki, 1967; Lele, Anantharaman & John- 
son, 1967; Holloway, 1969; Lele, 1969; Lele, Prasad 
& Anantharaman, 1969; Lele & Rama Rao, 1970; 
Prasad & Lele, 1971). These methods, however, are 
all indirect, assuming random distribution of stack- 
ing faults. Moreover, most theories suppose the pres- 
ence of only one type of stacking fault in the lattice. 
One method without the latter restriction is that of 
Jagodzinski (1949a, b, c). Assuming a random stacking- 
fault distribution and an interaction range of three 
interlayer spacings ('Reichweite=3'), he determined 
the effect of this type of disorder on the intensity dis- 
tribution of scattered X-rays. His method was partly 
based on earlier work of Landau (1937) and Wilson 
(1942). Jagodzinski's two-parameter model was further 
developed and applied to some practical cases, mostly 

for the characterization of faulted ZnS structures by 
Mfiller (1952) and Singer & Gashurow (1963), who 
achieved, however, a reasonably good fit between cal- 
culated and photometrically measured intensity curves 
for random stacking fault distribution only. Even in 
these cases the use of the method was rather tiresome 
since, being an indirect method the calculation of a set 
of master curves was needed to find the best fitting 
curve whose parameters may be characteristic of the 
structure. 

We encountered the problem of characterizing 
lattices with stacking faults when investigating the 
structure of a great number of ZnS crystals. These crys- 
tals have been widely investigated because of their in- 
teresting polymorphic modifications. But, as has been 
shown by many authors (Mfiller, 1952; Brafman, Shach- 
ar & Steinberger, 1965; Verma & Krishna, 1966), these 
crystals (the natural ones and also those grown by diffe- 
rent methods)only seldom have a completely regular 
structure. Besides the high-temperature hexagonal, the 
low-temperature cubic, and the numerous polytype mod- 
ifications, the structure of the majority of the crystals 
contains many stacking faults. In such regions the 
Zn-S double layers of hexagonal symmetry are stacked 
perpendicularly to the hexagonal c axis (i.e. the cubic 
[l 1 l] direction) in such a manner that neighbouring 
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